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Motivation

Framework

Application task graph, a DAG where nodes represent tasks
and edges correspond to dependences between them.

Application DAG to be executed on a failure-prone platform of
p identical processors.

Each task is executed in parallel on the p processors.
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Objective and Questions

Objective : Minimizing the expectation of the total execution time.

Questions :

In which order should we execute the tasks?

At the end of the execution of each task Ti, should we
perform a checkpoint or should we proceed directly with the
computation of another task?
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State of the art

Bouguerra et al [1], Daly [3] and Young [4]:

Periodic checkpointing strategies.

Bouguerra, Trystram, and Wagner [2]:

Checkpointing strategies for computational tasks with linear
chains (with single processor).

Maximizing the amount of work done before the first failure.

NP-complete problem (in the weak sense) for uniform
distributions.

Pseudo-polynomial dynamic programming algorithm.

We solve the original problem that is minimizing the expected
execution time (At least for Exponential failures)
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Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure

A failure can happen during a checkpoint, a recovery, but not
a downtime (otherwise replace D by 0 and R by R + D).
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Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :
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Computation of E(T (W ,C ,R))

E(T (W,C ,R)) = Psuc(W + C )(W + C )

+(1−Psuc(W+C )) [E(Tlost(W + C )) + E (Trec) + E(T (W,C ,R))]

With an exponential failure distribution, we have :

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞
0 xP(X = x |X <W + C )dx

E(Tlost(W + C )) = 1
λ −

W+C
eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W,C ,R)) = eλR
(
1
λ + D

)
(eλ(W+C) − 1)
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Problem statement

The general scheduling problem is :

Given a time bound K , can we find an ordering for the
execution of several independent tasks, and decide after which
tasks to checkpoint, so that the expected execution time does
not exceed K?

Proposition

Consider n independent tasks, T1, ..., Tn, with task Ti of duration
Wi for 1 ≤ i ≤ n. All checkpoint and recovery times are equal to
C, and there is no downtime (D = 0). The problem to schedule
these tasks, and to decide after which tasks to checkpoint, so as to
minimize the expected execution time, is NP-complete in the
strong sense.
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Proof of NP-completeness

We use a reduction from 3-PARTITION, which is NP-complete in
the strong sense.

General instance I1 of 3-PARTITION:
given 3n integers a1, . . . , a3n and a number T such that∑

1≤j≤3n aj = nT , and T
4 < aj <

T
2 for 1 ≤ j ≤ 3n, does

there exist a partition in n subsets B1, . . . ,Bn of {a1, . . . , a3n}
such that for all 1 ≤ i ≤ n,

∑
aj∈Bi

aj = T . Note that
necessarily in any solution, each Bi has cardinal 3.
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Proof of NP-completeness

Instance I2 of our problem :3n independent tasks: task1, ...,
task3n, taski being of size Wi = ai .We let:
λ = 1

2T , C = R = 1
λ(ln(2)− 1

2), and

D = 0, K = n eλC

λ (eλ(T+C) − 1).

I1 has a solution =⇒ I2 has a solution.

Suppose that I1 has a solution B1, . . . ,Bn.
Propose the following solution:

We execute the subsets B1, . . . ,Bn in any order;

for each subset Bi , we schedule its three tasks in any order,
and we checkpoint after the third one.

The expected total execution time is E = n eλC

λ (eλ(T+C) − 1) = K ,
hence a solution to I2.



Proof of NP-completeness

I2 has a solution =⇒ I1 has a solution.
Suppose I2 has a solution:

3n independent tasks and a partition in m subsets B1, . . . ,Bm∑m
i=1 Ti = nT and m checkpoints

Ti C

. . .

. . .
C

Bm

Tm

. . .

T1

B1

C

. . .
Bi

The expected total execution time is:

E =
∑m

i=1
eλC

λ (eλ(Ti+C) − 1), and E ≤ K .

We show that the minimum value of E is uniquely reached for
m = n and Ti = T for all i , in which case E = K .
So B1, . . . ,Bn is a solution for I1.
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Problem statement

We want to compute the optimal expected execution time, that is:

the expectation E of the time needed to process all the tasks
of an applications whose DAG is a linear chain.

Problem:

Decide whether to checkpoint or not after the completion of
each given task.
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Dynamic programming
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Dynamic programming

Algorithm 1: DPMAKESPAN(x , n)

if x = n then
return (E(T (Wn,Cn,Rn−1)), n)

best ← E(T (
∑n

i=xWi ,Cn,Rx−1))
numTask ← n
for j = x to n − 1 do

(exp succ , num Task)← DPMAKESPAN(j + 1 , n)
Cur ← exp succ

+E(T (
∑j

i=xWi ,Cj ,Rx−1))
if Cur < best then

best ← Cur
numTask ← j

return (best, numTask)



Dynamic programming
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Linear complexity

Proposition

Algorithm1 provides the optimal solution for a linear chain of n
tasks. Its complexity is O(n2).
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Extensions

General model of checkpointing costs:

The checkpoint after a task Ti may depend on Ti and on some
other tasks that have been executed since the last checkpoint.

Alleviating the full parallelism assumption:

Variable parallelism.
Ressource allocation problem.

Using general failure laws than Exponential distributions:

First difficulty: Approximating the failure distribution of a
platform of p processors.
Second difficulty: Estimating the expected execution time of a
work W.



Conclusion

Important results:

Closed-form formula for the expected execution time of a
computational workflows followed by its checkpoint (using
Exponential failure distribution).

The strong NP-hardness of the problem for independent tasks
and constant checkpoint costs.

Dynamic programming algorithm for linear chains of tasks
with arbitrary checkpoint costs.
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